Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Mech Methods ; : 1-10, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375806

RESUMO

Target lipid model (TLM) and toxic unit (TU) approaches were applied to ecotoxicity and chemistry data from low-energy WAFs (LE-WAFs) of source and weathered crude oils originating from the Deepwater Horizon oil spill. The weathered oils included artificially weathered oils and naturally weathered samples collected in the Gulf of Mexico after the spill. Oil weathering greatly reduced the concentrations of identified LE-WAF components, however, the mass of uncharacterized polar material (UPC) in the LE-WAFs remained largely unchanged during the weathering process. While the TLM-derived calculations displayed a significant decrease in toxicity (TUs) for the heavily weathered oils, copepod toxicity, expressed as LC10-based TUs, were comparable between LE-WAFs of fresh and weathered oils. The discrepancy between observed and predicted toxicity for the LE-WAFs of artificially weathered oils may be related to limitations by the chemical analyses or increased toxicity due to generation of new unknown compounds during the weathering process.

2.
Toxicol Mech Methods ; 34(3): 245-255, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38375852

RESUMO

Crude oil spilled at sea is chemically altered through environmental processes such as dissolution, biodegradation, and photodegradation. Transformation of hydrocarbons to oxygenated species increases water-solubility. Metabolites and oxidation products largely remain uncharacterized by common analytical methods but may be more bioavailable to aquatic organisms. Studies have shown that unresolved (i.e. unidentified) polar compounds ('UPCs') may constitute > 90% of the water-accommodated fraction (WAF) of heavily weathered crude oils, but still there is a paucity of information characterizing their toxicological significance in relation to other oil-derived toxicants. In this study, low-energy WAFs (no droplets) were generated from two field-weathered oils (collected during the 2010 Deepwater Horizon incident) and their polar fractions were isolated through fractionation. To allow establishment of thresholds for acute toxicity (LC50) of the dissolved and polar fraction of field collected oils, we concentrated both WAFs and polar fractions to beyond field-documented concentrations, and the acute toxicity of both to the marine copepod Acartia tonsa was measured and compared to the toxicity of the native WAF (non-concentrated). The difference in toxic units (TUs) between the total of the mixture and of identified compounds of known toxicity (polycyclic aromatic hydrocarbons [PAHs] and alkyl phenols) in both WAF and polar fractions was used to estimate the contribution of the UPC to overall toxicity. This approach identified that UPC had a similar contribution to toxicity as identified compounds within the WAFs of the field-weathered oils. This signifies the relative importance of polar compounds when assessing environmental impacts of spilled and weathered oil.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Poluição por Petróleo/análise , Poluentes Químicos da Água/toxicidade , Óleos , Petróleo/toxicidade , Petróleo/análise , Água , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
3.
Aquat Toxicol ; 261: 106582, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369158

RESUMO

During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade/métodos , Poluição por Petróleo/análise , Água/química
4.
Int Marit Health ; 73(1): 1-9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35380168

RESUMO

BACKGROUND: In-situ burning (ISB) could be an effective cleanup method during spills. This study aims to study occupational exposure to pollutants emitted from offshore, large-scale ISB-experiments among personnel on vessels involved in ISB. MATERIALS AND METHODS: Six experimental ISBs after release of 4.2-6 m3 crude or refined oils were performed. Air measurements on three vessels were taken of particulate matter (PM) of different size fractions, polycyclic aromatic hydrocarbons (PAH) and volatile organic compounds (VOC). RESULTS: One vessel was located upwind (about 80-140 m) from the burning oil while two work boats were positioned 200-400 m downwind. One of the work boats moved back and forth transverse to the smoke plume while the other followed the edge of the smoke plume downwind. During the burn period (28-63 min) the range of mean concentrations of PM2.5 particles in the closest work boat downwind from the burn (0.068-0.616 mg/m3) was considerably higher than in the upwind vessel (0.0198-0.029 mg/m3) and in the work boat moving downwind at the edge of the visible smoke (0.007-0.078 mg/m3). The particles were mainly in the PM<1 fraction. In the work boat closest to the burn the mean concentration of particulate PAH and VOC was 0.046-0.070 ng/m3 and < limit of detection -17.1 ppm, respectively. CONCLUSIONS: The mean PM2.5 levels in the closest vessel varied between 4 and 41 times higher than the 24-hour Norwegian Air Quality Criteria for the general population, indicating that the particulate exposure may impose a health risk for personnel up to 400 m downwind from an ISB. Exposure to VOC and PAH among crew on board vessels both upwind and downwind from the burning was low during these conditions. However, it is recommended that crew on vessels close to and downwind of smoke plumes from oil fires should use half-masks with P3 filters.


Assuntos
Poluentes Atmosféricos , Incêndios , Exposição Ocupacional , Poluição por Petróleo , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Poluição por Petróleo/análise , Navios
5.
Toxicol Rep ; 9: 163-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35145880

RESUMO

Burn residues collected after large scale experimental in situ burns performed in the North Sea were characterised with emphasis on chemistry and acute toxicity. Low-energy water accommodated fractions (WAFs) of three marine fuels (Ultra Low Sulphur Fuel Oil (ULSFO), bunker oil (IFO180), and marine gas oil (MGO) and their field-generated residues from in situ burning (ISB). were prepared to evaluate the potential impact of ISB residue to the environment. The toxicity effects on primary consumers were assessed by testing on early life stage (nauplii) of the marine copepod Calanus finmarchicus. Toxicity studies showed that ISB decreased the acute toxicity of the WAFs compared to the initial oils. WAF of MGO had highest toxicity, and ISB residue of MGO seems to be more toxic than WAFs of fresh ULSFO and IFO180. Additive toxicity expressed as toxic unit (TU) based on the chemical composition also indicated that the toxicity of WAFs from ISB residues were lower than for the initial oils. The 2-3 ring PAHs seem to contribute most to the TU. Overall, the three offshore burns reduced the total mass of PAHs in the water accommodated fractions by >90 % compared to the released unburned oils and caused a reduction of the acute toxicity to copepod nauplii.

6.
Sci Total Environ ; 823: 153779, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150678

RESUMO

Chemical herders may be used to sequester and thicken surface oil slicks to increase the time window for performing in situ burning of spilled oil on the sea surface. For herder use to be an environmentally safe oil spill response option, information regarding their potential ecotoxicity both alone and in combination with oil is needed. This study aimed at assessing if using herders can cause toxicity to cold-water marine organisms. Our objective was to test the two chemical herders Siltech OP-40 (OP-40) and ThickSlick-6535 (TS-6535) with and without oil for toxicity using sensitive life stages of cold-water marine copepod (Calanus finmarchicus) and fish (Gadus morhua). For herders alone, OP-40 was consistently more toxic than TS-6535. To test herders in combination with oil, low-energy water accommodated fractions (LE-WAFs, without vortex) with Alaskan North Slope crude oils were prepared with and without herders. Dissolution of oil components from surface oil was somewhat delayed following herder application, due to herder-induced reduction in contact area between water and oil. The LE-WAFs were also used for toxicity testing, and we observed no significant differences in toxicity thresholds between treatments to LE-WAFs generated with oil alone and oil treated with herders. The operational herder-to-oil ratio is very low (1:500), and the herders tested in the present work displayed acute toxicity at concentrations well above what would be expected following in situ application. Application of chemical herders to oil slicks is not expected to add significant effects to that of the oil for cold-water marine species exposed to herder-treated oil slicks.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Petróleo/toxicidade , Poluição por Petróleo/análise , Água , Poluentes Químicos da Água/análise
7.
Environ Res ; 205: 112419, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822858

RESUMO

In situ burning (ISB) is an oil spill response technique including ignition and burning to remove oil on the water surface. The technique rapidly and effectively removes large portions of the oil. However, the combustion process causes a large smoke plume and leaves a viscous residue in the water. During six large-scale experimental burns in the North Sea in 2018 and 2019, the smoke plume, released oil and contained residues were analysed. The objectives were to document the content of particles and gases in the smoke plume, properties of both the released oils and residues, and the effectiveness of the burns. Oseberg crude oil, Ultra Low Sulphur Fuel Oil (ULSFO), Intermediate Fuel Oil (IFO180) and Marine Gas Oil (MGO) were released into a fire-boom and ignited. Particles and gases in the smoke plume were monitored using drones with several sensors. Soot particle monitoring indicated that more than 90% of the particles produced during the burns were <1 µm. Soot fallout was mainly limited to visible smoke, and the particle concentration was highest directly under the smoke plume and declined with distance from the burn. Gas monitoring in the smoke indicated low concentrations of SO2 and NOX (<2 ppm), and the concentrations of CO2 and CO were within air quality standards. Black Carbon produced relative to the amount of oil burned was 10-18%. The burn efficiency varied and were estimated to 80-91% for Oseberg, >90% for MGO, and <60% for both ULSFO and IFO180. The present paper addresses the results of the smoke plume monitoring, properties of the ISB residues and the burn efficiency.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Queimaduras , Poluição por Petróleo , Petróleo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Óleos/análise , Petróleo/análise , Poluição por Petróleo/análise
8.
Aquat Toxicol ; 237: 105881, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139396

RESUMO

Due to the heavy fuel oil (HFO) ban in Arctic maritime transport and new legislations restricting the sulphur content of fuel oils, new fuel oil types are continuously developed. However, the potential impacts of these new fuel oil types on marine ecosystems during accidental spills are largely unknown. In this study, we studied the toxicity of three marine fuel oils (two marine gas oils with low sulphur contents and a heavy fuel oil) in early life stages of cod (Gadus morhua). Embryos were exposed for 4 days to water-soluble fractions of fuel oils at concentrations ranging from 4.1 - 128.3 µg TPAH/L, followed by recovery in clean seawater until 17 days post fertilization. Exposure to all three fuel oils resulted in developmental toxicity, including severe morphological changes, deformations and cardiotoxicity. To assess underlying molecular mechanisms, we studied fuel oil-mediated activation of aryl hydrocarbon receptor (Ahr) gene battery and genes related to cardiovascular, angiogenesis and osteogenesis pathways. Overall, our results suggest comparable mechanisms of toxicity for the three fuel oils. All fuel oils caused concentration-dependant increases of cyp1a mRNA which paralleled ahrr, but not ahr1b transcript expression. On the angiogenesis and osteogenesis pathways, fuel oils produced concentration-specific transcriptional effects that were either increasing or decreasing, compared to control embryos. Based on the observed toxic responses, toxicity threshold values were estimated for individual endpoints to assess the most sensitive molecular and physiological effects, suggesting that unresolved petrogenic components may be significant contributors to the observed toxicity.


Assuntos
Óleos Combustíveis , Gadus morhua , Petróleo , Poluentes Químicos da Água , Animais , Ecossistema , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade
9.
Mar Environ Res ; 157: 104928, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275510

RESUMO

Macondo source oils and artificially weathered oil residues from 150 °C+ to 300 °C+, including artificially photo oxidized oils, were prepared and used for generating low energy water accommodated fractions (LE-WAFs) in order to assess the impact of oil weathering on WAF chemistry composition and toxicity to marine organisms. Two pelagic species representing primary producers (the marine algae Skeletonema pseudocostatum) and invertebrates (the marine copepod Acartia tonsa) were tested. Obtained acute toxicity levels, expressed as EC/LC50 values, were in the same range or above the obtained maximum WAF concentrations for WAFs from most weathering degrees. Based on % WAF dilutions, reduced toxicity was determined as a function of weathering. The chemical compositions of all WAFs were compared to compositions obtained from water samples reported in the GRIIDC database using multivariate analysis, indicating that WAFs of photo oxidized and two field weathered oils resembled the field data the most.


Assuntos
Poluição por Petróleo , Petróleo/toxicidade , Animais , Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Oxirredução , Hidrocarbonetos Policíclicos Aromáticos , Testes de Toxicidade Aguda , Poluentes Químicos da Água
10.
Sci Total Environ ; 694: 133682, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31386952

RESUMO

Extracts of produced waters from five mature Norwegian Sea oil fields were examined as total organic extracts (TOEs) and after fractionation into operationally-defined 'polar' and 'apolar' fractions. The TOEs and fractions were examined by gas chromatography (GC), GC-mass spectrometry (GC-MS), two dimensional GC-MS (GC × GC-MS) and liquid chromatography with high-resolution spectrometry (LC-HRMS) techniques. Low molecular weight aromatics, phenols and other common petroleum-derived hydrocarbons were characterized and quantified in the TOEs and fractions. In addition, a range of more uncommon polar and apolar constituents, including those likely derived from production chemicals, such as trithiolane, imidazolines and quaternary amine compounds (so-called 'quats'), were tentatively identified, using GC × GC-MS and LC-HRMS. The acute toxicity of the TOEs and subfractions was investigated using early life stages of the marine copepod Acartia tonsa. Toxicity varied significantly for different PW TOEs and subfractions. For some PWs, the toxicity was attributed mainly to the 'polar' components, while that of other PWs was associated mainly with the 'apolar' components. Importantly, the observed toxicity could not be explained by the presence of the commonly reported compounds only. Although, due to the vast chemical complexity even of the sub-fractions of the PW extracts, specific compounds driving the observed toxicity could be not be elucidated in this study, the proposed approach may suggest a way forward for future revisions of monitoring regimes for PW discharges.


Assuntos
Monitoramento Ambiental/métodos , Campos de Petróleo e Gás , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade , Fracionamento Químico , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Petróleo , Fenóis
11.
Chemosphere ; 204: 290-293, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29665531

RESUMO

While biodegradation of chemically dispersed oil has been well documented, only a few studies have focused on the degradation of the dispersant compounds themselves. The objective of this study was to determine the biodegradation of dispersant surfactants in cold seawater, relevant for deep sea or Arctic conditions. Biotransformation of the surfactants dioctyl-sodium sulfosuccinate (DOSS), Tween 80, Tween 85, and α/ß-ethylhexylsulfosuccinate (EHSS, expected DOSS hydrolysis product) in the commercial dispersants Corexit 9500, Dasic Slickgone NS and Finasol OSR52 were determined. The biotransformation studies of the surfactants were performed in natural seawater at 5 °C over a period of 54 days without oil present. The surfactants were tested at concentrations of 1, 5, and 50 mg/L, the lower concentration being as close as possible to expected field concentrations. Experiments with dispersants concentrations of 1 mg/L resulted in rapid biotransformation of Tween 80 and Tween 85, with depletion after 8 days, while DOSS showed rapid biotransformation after a lag period of 16 days. The degradation half-life of DOSS increased from 4.1 days to >500 days as Corexit 9500 concentrations went from 1 mg/L to 50 mg/L, emphasizing the importance of performing experiments at dispersant concentrations as close as possible to environmentally relevant concentrations. EHSS showed limited degradation compared to other surfactants. This study shows that the surfactants DOSS, Tween 80 and Tween 85 in the three chemical dispersants studied are biodegradable in cold seawater, particularly in environmentally relevant concentrations.


Assuntos
Biodegradação Ambiental , Poluição por Petróleo/análise , Água do Mar/química , Tensoativos/química , Poluentes Químicos da Água/análise
12.
Mar Pollut Bull ; 127: 175-181, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475652

RESUMO

Subsea blowouts have the potential to spread oil across large geographical areas, and subsea dispersant injection (SSDI) is a response option targeted at reducing the impact of a blowout, especially reducing persistent surface oil slicks. Modified Weber scaling was used to predict oil droplet sizes with the OSCAR oil spill model, and to evaluate the surface oil volume and area when using SSDI under different conditions. Generally, SSDI reduces the amount of oil on the surface, and creates wider and thinner surface oil slicks. It was found that the reduction of surface oil area and volume with SSDI was enhanced for higher wind speeds. Overall, given the effect of SSDI on oil volume and weathering, it may be suggested that tar ball formation, requiring thick and weathered oil, could possibly be reduced when SSDI is used.


Assuntos
Poluição por Petróleo , Modelos Teóricos , Petróleo , Poluentes Químicos da Água , Tempo (Meteorologia)
13.
Mar Pollut Bull ; 111(1-2): 402-410, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27531144

RESUMO

The blowout on the Ekofisk field in the North Sea in 1977 initiated R&D efforts in Norway focusing on improving oil spill contingency in general and more specifically on weathering processes and modeling drift and spreading of oil spills. Since 1978, approximately 40 experimental oil spills have been performed under controlled conditions in open and ice covered waters in Norway. The importance of these experimental oil spills for understanding oil spill behavior, development of oil spill and response models, and response technologies are discussed here. The large progress within oil spill R&D in Norway since the Ekofisk blowout has been possible through a combination of laboratory testing, basin studies, and experimental oil spills. However, it is the authors' recommendation that experimental oil spills still play an important role as a final validation for the extensive R&D presently going on in Norway, e.g. deep-water releases of oil and gas.


Assuntos
Poluição por Petróleo , Poluição Química da Água , Biodegradação Ambiental , Gelo , Modelos Teóricos , Mar do Norte , Noruega
14.
Mar Pollut Bull ; 94(1-2): 123-30, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840870

RESUMO

The Norwegian Authorities have classified 30 WWII shipwrecks to have a considerable potential for pollution to the environment, based on the location and condition of the wreck and the types and amount of fuel. Oil thus far has been removed from eight of these shipwrecks. The water accommodated fractions of oils from two British wrecks and two German wrecks have been studied with special emphasis on chemistry and biological effects (algae growth (Skeletonema costatum) and copepod mortality (Calanus finmarchicus)). Chemical analyses were also performed on three additional German wreck oils. The results from these studies show that the coal based oils from German WWII shipwrecks have higher toxicity to marine organisms than the mineral oils from the British shipwrecks. The potential for higher impact on the marine environment of coal based oils has resulted in an altering of the priority list for oil recovery from WWII wrecks by the authorities.


Assuntos
Óleos Combustíveis/análise , Navios , Poluentes Químicos da Água/toxicidade , II Guerra Mundial , Animais , Copépodes , Diatomáceas , Monitoramento Ambiental , Óleos Combustíveis/toxicidade , Óleos , Poluição por Petróleo/análise , Poluição por Petróleo/estatística & dados numéricos , Poluentes Químicos da Água/análise
15.
Mar Pollut Bull ; 91(1): 222-9, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25534626

RESUMO

Two Source oils and five field collected oil residues from the Deepwater Horizon incident were chemically characterized. Water accommodated fractions (WAFs) of the Source oils and two of the field-weathered oils were prepared to evaluate the impact of natural weathering on the chemical composition and the acute toxicity of the WAFs. Toxicity test species representing different tropic levels were used (the primary producer Skeletonema costatum (algae) and the herbivorous copepod Acartia tonsa). The results suggest that the potential for acute toxicity is higher in WAFs from non-weathered oils than WAFs from the field weathered oils. The Source oils contained a large fraction of soluble and bioavailable components (such as BTEX (benzene, toluene, ethyl benzene, xylenes) and naphthalene), whereas in the surface collected oils these components were depleted by dissolution into the water column as the oil rose to the surface and by evaporative loss after reaching the sea surface.


Assuntos
Poluição por Petróleo , Petróleo/análise , Poluentes Químicos da Água/análise , Animais , Copépodes , Diatomáceas , Óleos/análise , Petróleo/toxicidade , Testes de Toxicidade Aguda , Água/análise , Poluentes Químicos da Água/toxicidade , Tempo (Meteorologia)
16.
Mar Pollut Bull ; 64(1): 49-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22112284

RESUMO

The chemical composition and toxicity of a water soluble fraction (WSF) of oil versus the underlying water after in situ burning (ISB), has been studied in a laboratory experiment. A system for allowing water sampling after ISB was developed. Seawater samples and oil were collected prior to and immediately after ISB, and chemical analysis was conducted. The chemical characterization of the water showed that the disappearance of water soluble oil components during ISB was insignificant. Acute toxicity tests with the marine copepod Calanus finmarchicus and Microtox® bioassay was performed to establish LC(50)/EC(50) values of the water. The results were compared with regular WAF systems with unburned weathered oil, and indicated no increase in toxicity in the underlying water after ISB.


Assuntos
Monitoramento Ambiental/métodos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Copépodes/efeitos dos fármacos , Recuperação e Remediação Ambiental , Poluição por Petróleo , Testes de Toxicidade Aguda
17.
Mar Pollut Bull ; 62(5): 976-84, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21396663

RESUMO

A large-scale field experiment took place in the marginal ice zone in the Barents Sea in May 2009. Fresh oil (7000 L) was released uncontained between the ice floes to study oil weathering and spreading in ice and surface water. A detailed monitoring of oil-in-water and ice interactions was performed throughout the six-day experiment. In addition, meteorological and oceanographic data were recorded for monitoring of the wind speed and direction, air temperature, currents and ice floe movements. The monitoring showed low concentrations of dissolved hydrocarbons and the predicted acute toxicity indicated that the acute toxicity was low. The ice field drifted nearly 80 km during the experimental period, and although the oil drifted with the ice, it remained contained between the ice floes.


Assuntos
Gelo/análise , Petróleo/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Regiões Árticas , Monitoramento Ambiental , Oceanos e Mares , Compostos Orgânicos Voláteis/análise , Movimentos da Água , Poluentes Químicos da Água/química
18.
Mar Pollut Bull ; 56(10): 1746-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18715599

RESUMO

The water accommodated fractions (WAFs) of nine oils in seawater have been studied. The oils range from light condensate to heavy crude, and include one highly biodegraded oil and one very wax rich oil. This study has identified large variations in the chemical composition of WAFs, depending on oil type, temperature, and mixing time. Experiments at different temperatures (2-13 degrees C) showed that it takes longer time to reach equilibrium at the lowest temperatures, and that this varies for the different oil types. Oils with higher pour point (wax rich oils) need a longer time to establish WAF in equilibrium than oils with lower pour points (naphthenic oils). At 13 degrees C a mixing time of 48h, as recommended in standard procedures, seems to be sufficient for asphalthenic and paraffinic oils. The results demonstrated that for WAF prepared from an unknown oil, or at lower temperatures, different mixing times should be tested. Since the WAF often is used in toxicity testing, the toxicity might be underestimated if the mixing time is too short.


Assuntos
Óleos Combustíveis/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Temperatura , Tempo
19.
Microb Ecol ; 55(3): 540-52, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17805918

RESUMO

Microbial communities associated with Arctic fjord ice polluted with petroleum oils were investigated in this study. A winter field experiment was conducted in the Van Mijen Fjord (Svalbard) from February to June 2004, in which the ice was contaminated with a North Sea paraffinic oil. Holes were drilled in the ice and oil samples frozen into the ice at the start of the experiment. Samples, including cores of both oil-contaminated and clean ice, were collected from the field site 33, 74, and 112 days after oil application. The sampled cores were separated into three sections and processed for microbiological and chemical analyses. In the oil-contaminated cores, enumerations of total prokaryotic cells by fluorescence microscopy and colony-forming units (CFU) counts of heterotrophic prokaryotes both showed stimulation of microbial growth, while concentrations of oil-degrading prokaryotes remained at similar levels in contaminated and clean ice. Analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments by denaturing gradient gel electrophoresis (DGGE) revealed that bacterial communities in oil-contaminated ice generated fewer bands than communities in clean ice, although banding patterns changed both in contaminated and clean ice during the experimental period. Microbial communities in unpolluted ice and in cores contaminated with the paraffinic oil were examined by cloning and sequence analysis. In the contaminated cores, the communities became predominated by Gammaproteobacteria related to the genera Colwellia, Marinomonas, and Glaciecola, while clean ice included more heterogeneous populations. Chemical analysis of the oil-contaminated ice cores with determinations of n-C17/Pristane and naphthalene/phenanthrene ratios indicated slow oil biodegradation in the ice, primarily in the deeper parts of the ice with low hydrocarbon concentrations.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Camada de Gelo/microbiologia , Petróleo/metabolismo , Poluentes Químicos da Água/metabolismo , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Petróleo/análise , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Svalbard , Poluentes Químicos da Água/análise
20.
Mar Pollut Bull ; 48(7-8): 731-42, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041429

RESUMO

When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.


Assuntos
Meio Ambiente , Indústrias Extrativas e de Processamento/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Cromatografia Gasosa-Espectrometria de Massas , Mar do Norte , Noruega , Petróleo/análise , Fenóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...